From ftm
Line 3: | Line 3: | ||
{{Module | | {{Module | | ||
| name=gbr.addenv | | name=gbr.addenv | ||
− | | brief= | + | | brief=Additive synthesis: generate partials with a given envelope |
| descr=Adds partials with a spectral envolope (given as a vector or list) to an incoming spectrum using the FFT-1 technique.The output is typically connected to gbr.ifft (in real mode) or another gbr.addenv or gbr.addpartials module. | | descr=Adds partials with a spectral envolope (given as a vector or list) to an incoming spectrum using the FFT-1 technique.The output is typically connected to gbr.ifft (in real mode) or another gbr.addenv or gbr.addpartials module. | ||
| arguments=1 <num: max> - maximum number of partials [64]<br> | | arguments=1 <num: max> - maximum number of partials [64]<br> | ||
Line 14: | Line 14: | ||
{{Module | | {{Module | | ||
| name=gbr.addpartials | | name=gbr.addpartials | ||
− | | brief= | + | | brief=Additive synthesis: generate partials with given frequencies and amplitudes |
| descr=Adds partials (given as a vector or list) to an incoming spectrum using the FFT-1 technique.The output is typically connected to gbr.ifft (in real mode) or another gbr.addpartials or gbr.addenv module.<br>Frequencies and amplitudes can be given by separated vectors with separated inputs (input format 'vec') or as a single matrix to the first inlet.The input format (attribute @format) determines the interpretation of the columns of the incoming matrix: 'fa' requires 2 columns with frequencies and amplitudes, 'ifa' requires 3 columns with partial indices, frequencies and amplitudes. | | descr=Adds partials (given as a vector or list) to an incoming spectrum using the FFT-1 technique.The output is typically connected to gbr.ifft (in real mode) or another gbr.addpartials or gbr.addenv module.<br>Frequencies and amplitudes can be given by separated vectors with separated inputs (input format 'vec') or as a single matrix to the first inlet.The input format (attribute @format) determines the interpretation of the columns of the incoming matrix: 'fa' requires 2 columns with frequencies and amplitudes, 'ifa' requires 3 columns with partial indices, frequencies and amplitudes. | ||
| arguments=1 <num: max> - maximum number of partials [64]<br> | | arguments=1 <num: max> - maximum number of partials [64]<br> | ||
Line 25: | Line 25: | ||
{{Module | | {{Module | | ||
| name=gbr.autox | | name=gbr.autox | ||
− | | brief= | + | | brief=Auto correlation and similar |
| descr=Calculates autocorrelation, distance, quadratic distance, sum magnitude difference function and accumulated difference function (yin). | | descr=Calculates autocorrelation, distance, quadratic distance, sum magnitude difference function and accumulated difference function (yin). | ||
| arguments=1 <num: size> - calculation size [256]<br>2 <num: width> - window width [256]<br> | | arguments=1 <num: size> - calculation size [256]<br>2 <num: width> - window width [256]<br> | ||
Line 36: | Line 36: | ||
{{Module | | {{Module | | ||
| name=gbr.bands | | name=gbr.bands | ||
− | | brief= | + | | brief=Calulate frequency bands (or integrate bands of a similar domain) |
| descr=Sums regions of the incoming vector to bands in different schemes:sum of values between given bounds or classical HTK or FC mel coefficients.Its input is typically connected to gbr.fft (in real mode). | | descr=Sums regions of the incoming vector to bands in different schemes:sum of values between given bounds or classical HTK or FC mel coefficients.Its input is typically connected to gbr.fft (in real mode). | ||
| arguments=[<num: boundaries> ...] | <num: input size> <num: output size> - input spectrum size and output bands number, or boundaries<br> | | arguments=[<num: boundaries> ...] | <num: input size> <num: output size> - input spectrum size and output bands number, or boundaries<br> | ||
Line 47: | Line 47: | ||
{{Module | | {{Module | | ||
| name=gbr.bq | | name=gbr.bq | ||
− | | brief= | + | | brief=Constant Q |
| descr=Calculates a constant Q transform on an incoming spectrum [J.Brown, M.Puckette 1992].Its input is typically connected to gbr.fft (in real mode). | | descr=Calculates a constant Q transform on an incoming spectrum [J.Brown, M.Puckette 1992].Its input is typically connected to gbr.fft (in real mode). | ||
| arguments=<num: FFT size> <num: min freq> <num: channels per octave> <num: threshold> <num: number of channels> - filter kernel parameters<br> | | arguments=<num: FFT size> <num: min freq> <num: channels per octave> <num: threshold> <num: number of channels> - filter kernel parameters<br> | ||
Line 58: | Line 58: | ||
{{Module | | {{Module | | ||
| name=gbr.copy | | name=gbr.copy | ||
− | | brief= | + | | brief=Copy vector (fmat) out of a delay line or an fmat or fvec) |
| descr=Copies a grain (fmat vector) of a given duration out of a delay line at a given delay time and outputs an fmat reference.If the given delay time is less than the the duration the vector will be shortened | | descr=Copies a grain (fmat vector) of a given duration out of a delay line at a given delay time and outputs an fmat reference.If the given delay time is less than the the duration the vector will be shortened | ||
| arguments=1 <delayline|fmat|fvec: source> - source reference<br>2 <num: duration> - grain duration [100]<br> | | arguments=1 <delayline|fmat|fvec: source> - source reference<br>2 <num: duration> - grain duration [100]<br> | ||
Line 69: | Line 69: | ||
{{Module | | {{Module | | ||
| name=gbr.crossx | | name=gbr.crossx | ||
− | | brief= | + | | brief=Cross correlation and similar |
| descr=Calculates correlation, distance, quadratic distance and sum magnitude difference function. | | descr=Calculates correlation, distance, quadratic distance and sum magnitude difference function. | ||
| arguments=1 <num: size> - calculation size [256]<br>2 <num: width> - window width [256]<br>3 <fmat|fvec: vector> - right operand<br> | | arguments=1 <num: size> - calculation size [256]<br>2 <num: width> - window width [256]<br>3 <fmat|fvec: vector> - right operand<br> | ||
Line 80: | Line 80: | ||
{{Module | | {{Module | | ||
| name=gbr.dct | | name=gbr.dct | ||
− | | brief= | + | | brief=Discrete cosine transform |
| descr=Calculates a DCT of the incoming vector. | | descr=Calculates a DCT of the incoming vector. | ||
| arguments=1 <num: input size> - size of input vector [40]<br>2 <num: output size> - number of DCT coefficients to be calculated [13]<br> | | arguments=1 <num: input size> - size of input vector [40]<br>2 <num: output size> - number of DCT coefficients to be calculated [13]<br> | ||
Line 91: | Line 91: | ||
{{Module | | {{Module | | ||
| name=gbr.dline~ | | name=gbr.dline~ | ||
− | | brief= | + | | brief=Classical delay line |
| descr=Delay line to be used with gbr.copy and gbr.tapout~. | | descr=Delay line to be used with gbr.copy and gbr.tapout~. | ||
| arguments=<sym: name> <num: size in given unit> - give name and size [none 100]<br> | | arguments=<sym: name> <num: size in given unit> - give name and size [none 100]<br> | ||
Line 102: | Line 102: | ||
{{Module | | {{Module | | ||
| name=gbr.drain~ | | name=gbr.drain~ | ||
− | | brief= | + | | brief=Forward delay line |
| descr=Delay line to write with different delays to be used with gbr.paste and gbr.tapin~. | | descr=Delay line to write with different delays to be used with gbr.paste and gbr.tapin~. | ||
| arguments=<sym: name> <num: size in given unit> - give name and size [none 100]<br> | | arguments=<sym: name> <num: size in given unit> - give name and size [none 100]<br> | ||
Line 113: | Line 113: | ||
{{Module | | {{Module | | ||
| name=gbr.fft | | name=gbr.fft | ||
− | | brief= | + | | brief=Fast Fourier transform |
| descr=Calculates FFT on incoming vector. | | descr=Calculates FFT on incoming vector. | ||
| arguments=1 <num: size> - FFT size (rounded to the next power of 2) [512]<br> | | arguments=1 <num: size> - FFT size (rounded to the next power of 2) [512]<br> | ||
Line 135: | Line 135: | ||
{{Module | | {{Module | | ||
| name=gbr.gen= | | name=gbr.gen= | ||
− | | brief= | + | | brief=Generate waveform/function |
| descr=Adds a given (and parametrised) waveform/function to an incomming vector.The user can chose among various waveforms/functions | | descr=Adds a given (and parametrised) waveform/function to an incomming vector.The user can chose among various waveforms/functions | ||
| arguments=<'cosine'|'sine': function> [<any: parameters> ...] - generator function and parameters ['cosine']<br> | | arguments=<'cosine'|'sine': function> [<any: parameters> ...] - generator function and parameters ['cosine']<br> | ||
Line 146: | Line 146: | ||
{{Module | | {{Module | | ||
| name=gbr.harms | | name=gbr.harms | ||
− | | brief= | + | | brief=Estimate harmonics from a given spectrum (or any other vector) |
| descr=Estimates frequencies (interpolated and scaled indices) and amplitudes of harmonics in an incoming vector.Harmonics are defined as peaks around the multiple of a given value (fundamental frequency) with a given tolerance.The estimation of harmonics in a spectrum works best when a logarthimic amplitude spectrum is provided as input. | | descr=Estimates frequencies (interpolated and scaled indices) and amplitudes of harmonics in an incoming vector.Harmonics are defined as peaks around the multiple of a given value (fundamental frequency) with a given tolerance.The estimation of harmonics in a spectrum works best when a logarthimic amplitude spectrum is provided as input. | ||
| arguments=1 <num: max harms> - maximum number of harmonics to be estimated [16]<br>2 <num: freq> - fundamental frequency in Hz [10]<br>3 <num: factor> - allowed deviation factor from theoretic harmonic frequency (linear factor of f0) [1.0]<br> | | arguments=1 <num: max harms> - maximum number of harmonics to be estimated [16]<br>2 <num: freq> - fundamental frequency in Hz [10]<br>3 <num: factor> - allowed deviation factor from theoretic harmonic frequency (linear factor of f0) [1.0]<br> | ||
Line 157: | Line 157: | ||
{{Module | | {{Module | | ||
| name=gbr.ifft | | name=gbr.ifft | ||
− | | brief= | + | | brief=Inverse fast Fourier transform |
| descr=Calculates inverse FFT on incoming vector. | | descr=Calculates inverse FFT on incoming vector. | ||
| arguments=1 <num: size> - FFT size (rounded to the next power of 2) [512]<br> | | arguments=1 <num: size> - FFT size (rounded to the next power of 2) [512]<br> | ||
Line 179: | Line 179: | ||
{{Module | | {{Module | | ||
| name=gbr.lpc | | name=gbr.lpc | ||
− | | brief= | + | | brief=Linear prediction coefficients |
| descr=Calculates LPC coefficients from incoming sinal frame. | | descr=Calculates LPC coefficients from incoming sinal frame. | ||
| arguments=1 <num: order> - LPC order [12]<br> | | arguments=1 <num: order> - LPC order [12]<br> | ||
Line 190: | Line 190: | ||
{{Module | | {{Module | | ||
| name=gbr.mask | | name=gbr.mask | ||
− | | brief= | + | | brief=Partial masking using critical band width |
| descr=Calculates and applies masking to incoming vector of partials.The input format (attribute @format) determines the interpretation of the columns of the incoming matrix: 'fa' requires 2 columns with frequencies and amplitudes, 'ifa' requires 3 columns with partial indices, frequencies and amplitudes. | | descr=Calculates and applies masking to incoming vector of partials.The input format (attribute @format) determines the interpretation of the columns of the incoming matrix: 'fa' requires 2 columns with frequencies and amplitudes, 'ifa' requires 3 columns with partial indices, frequencies and amplitudes. | ||
| arguments=none | | arguments=none | ||
Line 212: | Line 212: | ||
{{Module | | {{Module | | ||
| name=gbr.ola~ | | name=gbr.ola~ | ||
− | | brief= | + | | brief=Overlap-add |
| descr=Performs the overlap-add of incoming vectors into a forward delayline.The vector will be shortened at the end of the delayline. | | descr=Performs the overlap-add of incoming vectors into a forward delayline.The vector will be shortened at the end of the delayline. | ||
| arguments=1 <num: channels> - number of output channels [1]<br>2 <num: size> - buffer size [100]<br>3 <num: delay> - delay position [0]<br>4 <num: channel> - output channel (0 switches off) [1]<br> | | arguments=1 <num: channels> - number of output channels [1]<br>2 <num: size> - buffer size [100]<br>3 <num: delay> - delay position [0]<br>4 <num: channel> - output channel (0 switches off) [1]<br> | ||
Line 223: | Line 223: | ||
{{Module | | {{Module | | ||
| name=gbr.paste | | name=gbr.paste | ||
− | | brief= | + | | brief=Paste a grain (fmat or fvec) into a drain |
| descr=Copies a vector into a drain with a given delay.The vector will be shortened at the end of the drain. | | descr=Copies a vector into a drain with a given delay.The vector will be shortened at the end of the drain. | ||
| arguments=1 <delayline|fmat|fvec: destination> - destination (write delay line or fmat)<br>2 <num: delay> - delay position [0]<br> | | arguments=1 <delayline|fmat|fvec: destination> - destination (write delay line or fmat)<br>2 <num: delay> - delay position [0]<br> | ||
Line 234: | Line 234: | ||
{{Module | | {{Module | | ||
| name=gbr.peaks | | name=gbr.peaks | ||
− | | brief= | + | | brief=Estimate peaks (partials) from a given spectrum (or any other vector) |
| descr=Estimates frequencies (interpolated and scaled indices) and amplitudes of peaks in an incoming vector.The estimation of partials in a spectrum works best when a logarthimic amplitude spectrum (positive frequencies) is provided as input. | | descr=Estimates frequencies (interpolated and scaled indices) and amplitudes of peaks in an incoming vector.The estimation of partials in a spectrum works best when a logarthimic amplitude spectrum (positive frequencies) is provided as input. | ||
| arguments=1 <num: max peaks> - maximum number of peaks to be estimated [16]<br> | | arguments=1 <num: max peaks> - maximum number of peaks to be estimated [16]<br> | ||
Line 256: | Line 256: | ||
{{Module | | {{Module | | ||
| name=gbr.psy~ | | name=gbr.psy~ | ||
− | | brief= | + | | brief=Pysch synchronous (YIN-based) signal slicing |
| descr=Cuts incoming signal into elementary waveforms.Outputs vectors corresponding to two periods of the estimated frequency or fixed duration (256 points) when unvoiced. | | descr=Cuts incoming signal into elementary waveforms.Outputs vectors corresponding to two periods of the estimated frequency or fixed duration (256 points) when unvoiced. | ||
| arguments=none | | arguments=none | ||
Line 267: | Line 267: | ||
{{Module | | {{Module | | ||
| name=gbr.resample | | name=gbr.resample | ||
− | | brief= | + | | brief=Resampling |
| descr=Resamples incoming vector in different modes:'cubic' (cubic interpolation), 'downmean' (downsampling by calculating the mean of a given number of values), 'downremove' (picks nearest value) | | descr=Resamples incoming vector in different modes:'cubic' (cubic interpolation), 'downmean' (downsampling by calculating the mean of a given number of values), 'downremove' (picks nearest value) | ||
| arguments=1 <num: order> - resampling order/increment [1]<br> | | arguments=1 <num: order> - resampling order/increment [1]<br> | ||
Line 278: | Line 278: | ||
{{Module | | {{Module | | ||
| name=gbr.slice~ | | name=gbr.slice~ | ||
− | | brief= | + | | brief=Signal slicing |
| descr=Cuts incoming signal into frames of given size with given period (hop size). | | descr=Cuts incoming signal into frames of given size with given period (hop size). | ||
| arguments=1 <num: size> - frame size [512]<br>2 <num: size> - hop size [256]<br> | | arguments=1 <num: size> - frame size [512]<br>2 <num: size> - hop size [256]<br> | ||
Line 289: | Line 289: | ||
{{Module | | {{Module | | ||
| name=gbr.tapin~ | | name=gbr.tapin~ | ||
− | | brief= | + | | brief=Input tap for write delay line |
| descr=Simple input tap for write delay line defined by gbr.dline~. | | descr=Simple input tap for write delay line defined by gbr.dline~. | ||
| arguments=1 <delayline: write> - delay line (defined by gbr.drain~)<br>2 <num: delay> - delay time (in given unit) [0]<br> | | arguments=1 <delayline: write> - delay line (defined by gbr.drain~)<br>2 <num: delay> - delay time (in given unit) [0]<br> | ||
Line 300: | Line 300: | ||
{{Module | | {{Module | | ||
| name=gbr.tapout~ | | name=gbr.tapout~ | ||
− | | brief= | + | | brief=Output tap for read delay line |
| descr=Simple output tap for read delay line defined by gbr.drain~. | | descr=Simple output tap for read delay line defined by gbr.drain~. | ||
| arguments=1 <delayline: read> - delay line (defined by gbr.dline~)<br>2 - delay time (in given unit) [0]<br> | | arguments=1 <delayline: read> - delay line (defined by gbr.dline~)<br>2 - delay time (in given unit) [0]<br> | ||
Line 311: | Line 311: | ||
{{Module | | {{Module | | ||
| name=gbr.timer~ | | name=gbr.timer~ | ||
− | | brief= | + | | brief=Gabor timer |
| descr=stop watch in Gabor scheduling scheme | | descr=stop watch in Gabor scheduling scheme | ||
| arguments=none | | arguments=none | ||
Line 333: | Line 333: | ||
{{Module | | {{Module | | ||
| name=gbr.wind= | | name=gbr.wind= | ||
− | | brief= | + | | brief=Apply a window to an incoming frame, grain or wave |
| descr=Applies a chosen (and parametrized) window to the incomming fmat (column by column).The user can chose among various window types (see help patch). | | descr=Applies a chosen (and parametrized) window to the incomming fmat (column by column).The user can chose among various window types (see help patch). | ||
| arguments=<sym: function> [<any: parameters> ...] - window function and parameters ['hann']<br> | | arguments=<sym: function> [<any: parameters> ...] - window function and parameters ['hann']<br> | ||
Line 344: | Line 344: | ||
{{Module | | {{Module | | ||
| name=gbr.yin | | name=gbr.yin | ||
− | | brief= | + | | brief=Fundamentatal frequency estimation after de Cheveigné and Kawahara |
| descr=Estimates fundamental frequency and outputs energy, periodicity factor, and auto correlation coefficients. | | descr=Estimates fundamental frequency and outputs energy, periodicity factor, and auto correlation coefficients. | ||
| arguments=1 <num: min freq> - lowest estimated frequency in Hz [50.]<br>2 - quality/periodicity threshold [0.68]<br> | | arguments=1 <num: min freq> - lowest estimated frequency in Hz [50.]<br>2 - quality/periodicity threshold [0.68]<br> |
Revision as of 21:31, 2 March 2008
This reference is completely valid from FTM & Co 2.3.2.
gbr.addenv | Additive synthesis: generate partials with a given envelope | |||||||||||
Adds partials with a spectral envolope (given as a vector or list) to an incoming spectrum using the FFT-1 technique.The output is typically connected to gbr.ifft (in real mode) or another gbr.addenv or gbr.addpartials module. | ||||||||||||
|
gbr.addpartials | Additive synthesis: generate partials with given frequencies and amplitudes | |||||||||||
Adds partials (given as a vector or list) to an incoming spectrum using the FFT-1 technique.The output is typically connected to gbr.ifft (in real mode) or another gbr.addpartials or gbr.addenv module. Frequencies and amplitudes can be given by separated vectors with separated inputs (input format 'vec') or as a single matrix to the first inlet.The input format (attribute @format) determines the interpretation of the columns of the incoming matrix: 'fa' requires 2 columns with frequencies and amplitudes, 'ifa' requires 3 columns with partial indices, frequencies and amplitudes. | ||||||||||||
|
gbr.autox | Auto correlation and similar | |||||||||||
Calculates autocorrelation, distance, quadratic distance, sum magnitude difference function and accumulated difference function (yin). | ||||||||||||
|
gbr.bands | Calulate frequency bands (or integrate bands of a similar domain) | |||||||||||
Sums regions of the incoming vector to bands in different schemes:sum of values between given bounds or classical HTK or FC mel coefficients.Its input is typically connected to gbr.fft (in real mode). | ||||||||||||
|
gbr.bq | Constant Q | |||||||||||
Calculates a constant Q transform on an incoming spectrum [J.Brown, M.Puckette 1992].Its input is typically connected to gbr.fft (in real mode). | ||||||||||||
|
gbr.copy | Copy vector (fmat) out of a delay line or an fmat or fvec) | |||||||||||
Copies a grain (fmat vector) of a given duration out of a delay line at a given delay time and outputs an fmat reference.If the given delay time is less than the the duration the vector will be shortened | ||||||||||||
|
gbr.crossx | Cross correlation and similar | |||||||||||
Calculates correlation, distance, quadratic distance and sum magnitude difference function. | ||||||||||||
|
gbr.dct | Discrete cosine transform | |||||||||||
Calculates a DCT of the incoming vector. | ||||||||||||
|
gbr.dline~ | Classical delay line | |||||||||||
Delay line to be used with gbr.copy and gbr.tapout~. | ||||||||||||
|
gbr.drain~ | Forward delay line | |||||||||||
Delay line to write with different delays to be used with gbr.paste and gbr.tapin~. | ||||||||||||
|
gbr.fft | Fast Fourier transform | |||||||||||
Calculates FFT on incoming vector. | ||||||||||||
|
gbr.fire~ | Gabor timing impulse generator | |||||||||||
Periodically outputs a given fmat or a bang within the Gabor scheduling scheme. | ||||||||||||
|
gbr.gen= | Generate waveform/function | |||||||||||
Adds a given (and parametrised) waveform/function to an incomming vector.The user can chose among various waveforms/functions | ||||||||||||
|
gbr.harms | Estimate harmonics from a given spectrum (or any other vector) | |||||||||||
Estimates frequencies (interpolated and scaled indices) and amplitudes of harmonics in an incoming vector.Harmonics are defined as peaks around the multiple of a given value (fundamental frequency) with a given tolerance.The estimation of harmonics in a spectrum works best when a logarthimic amplitude spectrum is provided as input. | ||||||||||||
|
gbr.ifft | Inverse fast Fourier transform | |||||||||||
Calculates inverse FFT on incoming vector. | ||||||||||||
|
gbr.lifter | (to be documented) | |||||||||||
(to be documented) | ||||||||||||
|
gbr.lpc | Linear prediction coefficients | |||||||||||
Calculates LPC coefficients from incoming sinal frame. | ||||||||||||
|
gbr.mask | Partial masking using critical band width | |||||||||||
Calculates and applies masking to incoming vector of partials.The input format (attribute @format) determines the interpretation of the columns of the incoming matrix: 'fa' requires 2 columns with frequencies and amplitudes, 'ifa' requires 3 columns with partial indices, frequencies and amplitudes. | ||||||||||||
|
gbr.morph | (to be documented) | |||||||||||
(to be documented) | ||||||||||||
|
gbr.ola~ | Overlap-add | |||||||||||
Performs the overlap-add of incoming vectors into a forward delayline.The vector will be shortened at the end of the delayline. | ||||||||||||
|
gbr.paste | Paste a grain (fmat or fvec) into a drain | |||||||||||
Copies a vector into a drain with a given delay.The vector will be shortened at the end of the drain. | ||||||||||||
|
gbr.peaks | Estimate peaks (partials) from a given spectrum (or any other vector) | |||||||||||
Estimates frequencies (interpolated and scaled indices) and amplitudes of peaks in an incoming vector.The estimation of partials in a spectrum works best when a logarthimic amplitude spectrum (positive frequencies) is provided as input. | ||||||||||||
|
gbr.preemphasis | (to be documented) | |||||||||||
(to be documented) | ||||||||||||
|
gbr.psy~ | Pysch synchronous (YIN-based) signal slicing | |||||||||||
Cuts incoming signal into elementary waveforms.Outputs vectors corresponding to two periods of the estimated frequency or fixed duration (256 points) when unvoiced. | ||||||||||||
|
gbr.resample | Resampling | |||||||||||
Resamples incoming vector in different modes:'cubic' (cubic interpolation), 'downmean' (downsampling by calculating the mean of a given number of values), 'downremove' (picks nearest value) | ||||||||||||
|
gbr.slice~ | Signal slicing | |||||||||||
Cuts incoming signal into frames of given size with given period (hop size). | ||||||||||||
|
gbr.tapin~ | Input tap for write delay line | |||||||||||
Simple input tap for write delay line defined by gbr.dline~. | ||||||||||||
|
gbr.tapout~ | Output tap for read delay line | |||||||||||
Simple output tap for read delay line defined by gbr.drain~. | ||||||||||||
|
gbr.timer~ | Gabor timer | |||||||||||
stop watch in Gabor scheduling scheme | ||||||||||||
|
gbr.trace | (to be documented) | |||||||||||
(to be documented) | ||||||||||||
|
gbr.wind= | Apply a window to an incoming frame, grain or wave | |||||||||||
Applies a chosen (and parametrized) window to the incomming fmat (column by column).The user can chose among various window types (see help patch). | ||||||||||||
|
gbr.yin | Fundamentatal frequency estimation after de Cheveigné and Kawahara | |||||||||||
Estimates fundamental frequency and outputs energy, periodicity factor, and auto correlation coefficients. | ||||||||||||
|