|
|
Line 28: |
Line 28: |
| * mnm.xmul | | * mnm.xmul |
| | | |
− |
| |
− | {{Module |
| |
− | | name=ftm.mess
| |
− | | brief=
| |
− | | descr=
| |
− | | arguments=none
| |
− | | attributes=#triggerall <bool: flag> - all inlets trigger evaluation and output<br>#loadbang <bool: flag> - message box outputs at loadbang<br>#untuple <bool: flag> - single tuples are output as lists<br>
| |
− | | messages=postdoc - post external doc to console<br>
| |
− | | inlets=1 - input list<br>
| |
− | | outlets=1 - message outlet<br>
| |
− | }}
| |
| | | |
| {{Module | | | {{Module | |
mnm.knn
|
|
K nearest neighbour search
|
|
|
Find the k nearest neighbours and their distances to the query point in multi-dimensional data using an efficient multidimensional search tree with logarithmic time complexity.
|
|
|
arguments:
|
1 - max number k of nearest neighbours to search 2 - max radius of nearest neighbours to search (0 for unlimited)
|
attributes:
|
setdata - matrix(N, D) of data setsigma - matrix(1, D) of sigma = 1/weights dmode - decomposition mode: orthogonal, hyperplane, pca mmode - pivot calculation mode: mean, middle, median sort - sort output by distance height - given tree height if positive, subtract from maxheight if negative outdist <fmat|fvec|list|jitter: distance(n, 1)> - distances to n <= k nearest neighbours outind <fmat|fvec|list|jitter: indices(n, 1)> - data row indices of n <= k nearest neighbours
|
messages:
|
postdoc - post external doc to console outdist <fmat|fvec|list|jitter: distance(n, 1)> - distances to n <= k nearest neighbours outind <fmat|fvec|list|jitter: indices(n, 1)> - data row indices of n <= k nearest neighbours setk - max number k of nearest neighbours to search setradius - max radius of nearest neighbours to search (0 for unlimited) getmeanvectors <fmat: out> - copy mean vectors for the M tree nodes to copy fmat(M, D) out getsplitplanes <fmat: out> - copy vectors perpendicular to the hyperplanes splitting the M tree nodes to fmat(M, D) out getprofile <dict: out> - copy profiling info to given dict and clear print [<symbol: 'info'|'raw'|'data'|'compact'|'nodes'|'profile'>] - print tree info of varying detail (default: nodes), print and clear profiling info if keyword 'profile' is given
|
inlets:
|
1 <fmat|fvec|list|jitter: x(1, D)> - query vector to search k-nearest neighbours of 2 <fmat|fvec|list|jitter: data(N, D)> 3 <fmat|fvec|list|jitter: sigma(1, D)>
|
outlets:
|
1 <fmat|fvec|list|jitter: distance(n, 1)> - distances to n <= k nearest neighbours 2 <fmat|fvec|list|jitter: indices(n, 1)> - data row indices of n <= k nearest neighbours
|
|