From ftm
Revision as of 13:49, 2 March 2008 by Norbert (talk | contribs)
Jump to: navigation, search

gbr.addenv additive synthesis: generate partials with a given envelope
Adds partials with a spectral envolope (given as a vector or list) to an incoming spectrum using the FFT-1 technique.The output is typically connected to gbr.ifft (in real mode) or another gbr.addenv or gbr.addpartials module.
arguments: 0 - maximum number of partials (default is 64)
attributes: noisy <bool: noisy flag> - enable/disbale noisiness
coefs <num: # of coefs> - set number of FFT-1 spectral bin coefficients
messages: noisy <bool: noisy flag> - enable/disbale noisiness
coefs <num: # of coefs> - set number of FFT-1 spectral bin coefficients
inlets: 0 <fmat: complex vector> - spectrum (only positive frequencies) to which to add the generated partials
1 <num|fmat|fvec|list: freq(s)> - set fundamental frequency (num: for harmonics) or vector of partials frequencies
2 <num|fmat|fvec|list: spectral envelope> - set spectral envelope (given values will be linearly interpolated)
3 <num|fmat|fvec|list: phase(s)> - set phase (num: for all partials) or vector of phases for the given partials
outlets: 0 <fmat> - no description

gbr.addpartials additive synthesis: generate partials with given frequencies and amplitudes
Adds partials (given as a vector or list) to an incoming spectrum using the FFT-1 technique.The output is typically connected to gbr.ifft (in real mode) or another gbr.addpartials or gbr.addenv module.
Frequencies and amplitudes can be given by separated vectors with separated inputs (input format 'vec') or as a single matrix to the first inlet.The input format (attribute @format) determines the interpretation of the columns of the incoming matrix: 'fa' requires 2 columns with frequencies and amplitudes, 'ifa' requires 3 columns with partial indices, frequencies and amplitudes.
arguments: 0 - maximum number of partials (default is 64)
attributes: format <'vec'|'fa'|'ifa': input format> - set input matrix/vector format
noisy <bool: noisy flag> - enable/disbale noisiness
coefs <num: # of coefs> - set number of FFT-1 spectral bin coefficients
messages: format <'vec'|'fa'|'ifa': input format> - set input matrix/vector format
noisy <bool: noisy flag> - enable/disbale noisiness
coefs <num: # of coefs> - set number of FFT-1 spectral bin coefficients
inlets: 0 <fmat: complex vector> - spectrum (only positive frequencies) to which to add the generated partials
1 <num|fmat|fvec|list: freq(s)> - set fundamental frequency (num: for harmonics) or vector of partials frequencies
2 <num|fmat|fvec|list: amp(s)> - set amplitude (num: for harmonics) or vector of partials amplitudes
3 <num|fmat|fvec|list: phase(s)> - set phase (num: for all partials) or vector of phases for the given partials
outlets: 0 <fmat> - no description

gbr.autox auto correlation and similar
Calculates autocorrelation, distance, quadratic distance, sum magnitude difference function and accumulated difference function (yin).
arguments: 0 <num: # of points> - initalize calculation size
1 <num: # of points> - initalize window width
attributes: out <fmat: output> - set output vector
mode <'corr'|'dist'|'dist2'|'smdf'|'yin': mode> - set calculation mode
scale <num: factor> - set scaling factor
messages: size <num: size> - set calculation size (maximum output size)
width <num: width> - set window width
out <fmat: output> - set output vector
scale <num: factor> - set scaling factor
inlets: 0 <fmat|fvec: vector> - input vector
outlets: 0 <fmat: vector> - auto correlation vector

gbr.bands calulate frequency bands on an incoming spectrum (or similar domain)
Sums regions of the incoming vector to bands in different schemes:sum of values between given bounds or classical HTK or FC mel coefficients.Its input is typically connected to gbr.fft (in real mode).
arguments: <num: input size> <num: ouput size> | [<num: boundaries> ...] - init input spectrum size and output bands number, or boundaries
attributes: out <fmat: output> - set output vector
integ <'abs'|'sqrabs': type> - set the spectrum integration type
scale <num: factor> - set the bands filter scale
maxfreq <num: freq in Hz> - set the output maximum frequency
minfreq <num: freq in Hz> - set the output minimum frequency
mode <'bounds'|'mel'|'htkmel'|'fcmel'> - set the bands mode
sr <num: freq in Hz> - set the spectrum corresponding sampling rate (default 44100.), which is 2.*specnyq
specnyq <num: frew in Hz> - set the spectrum Nyquist frequency (default 22050.
messages: getstate - get the internal weights matrix
bounds [<num: bounaries> ...] - set band boundaries
outsize <num: # of points> - set the number of output bands
insize <num: # of points> - set the input spectrum size
out <fmat: output> - set output vector
integ <'abs'|'sqrabs': type> - set the spectrum integration type
scale <num: factor> - set the bands filter scale
maxfreq <num: freq in Hz> - set the output maximum frequency
minfreq <num: freq in Hz> - set the output minimum frequency
mode <'bounds'|'mel'|'htkmel'|'fcmel'> - set the bands mode
sr <num: freq in Hz> - set the spectrum corresponding sampling rate (default 44100.), which is 2.*specnyq
specnyq <num: frew in Hz> - set the spectrum Nyquist frequency (default 22050.
inlets: 0 <fmat|fvec>: - spectrum (positive frequencies)
outlets: 0 <fmat: bands/ceofficients> - vector of coefficients/bands
1 <fmat: weights> - internal weights matrix

gbr.bq constant Q
Calculates a constant Q transform on an incoming spectrum [J.Brown, M.Puckette 1992].Its input is typically connected to gbr.fft (in real mode).
arguments: <num: FFT size> <num: min freq> <num: channels per octave> <num: threshold> <num: number of channels> - init filter kernels
attributes: channels <num: # of channels> - set number of channels to calculate
messages: channels <num: # of channels> - set number of channels to calculate
inlets: 0 <fmat: complex vector> - input spectrum (positive frquencies)
outlets: 0 <fmat: coefficients> - filter bands

gbr.copy copy vector (fmat) out of a delay line or an fmat or fvec)
Copies a grain (fmat vector) of a given duration out of a delay line at a given delay time and outputs an fmat reference.If the given delay time is less than the the duration the vector will be shortened
arguments: 0 <delayline|fmat|fvec: source> - init source
1 <num: duration> - init grain duration
attributes: out <fmat: output> - set output vector
unit <'msec'|'sec'|'samp': unit> - set time unit to msecs, secs or samples
messages: bang - copy vector from the beginning of the delay line and output
set <delayline|fmat|fvec: source> - set source
out <fmat: output> - set output vector
unit <'msec'|'sec'|'samp': unit> - set time unit to msecs, secs or samples
inlets: 0 <num: delay> - copy and output grain at given delay position
1 <num: duration> - set duration
outlets: 0 <fmat: vector> - copied grain

gbr.crossx cross correlation and similar
Calculates correlation, distance, quadratic distance and sum magnitude difference function.
arguments: 0 <num: # of points> - initalize calculation size
1 <num: # of points> - initalize window width
2 <fmat|fvec: vector> - initalize right operand
attributes: out <fmat: output> - set output vector
mode <'corr'|'dist'|'dist2'|'smdf': mode> - set calculation mode
scale <num: factor> - set scaling factor
messages: size <num: size> - set calculation size (maximum output size)
width <num: width> - set window width
out <fmat: output> - set output vector
scale <num: factor> - set scaling factor
inlets: 0 <fmat|fvec: vector> - left input vector
1 <fmat|fvec: vector> - right input vector
outlets: 0 <fmat: vector> - cross correlation vector

gbr.dct discrete cosine transform
Calculates a DCT of the incoming vector.
arguments: 0 <num: # of points> - init the input size
1 <num: # of points> - init the output size
attributes: out <fmat: output> - set output vector
mode <'slaney'|'htk'|fc'> - set the discrete cosine transform mode
messages: getstate - get the internal weights matrix
outsize <num: # of points> - set the output size
insize <num: # of points> - set the input size
out <fmat: output> - set output vector
mode <'slaney'|'htk&#039\ ;|fc'> - set the discrete cosine transform mode
inlets: 0 <fmat|fvec: vector> - input vector
outlets: 0 <fmat: vector> - DCT coefficients
1 <fmat: vector> - internal weights matrix

gbr.dline~ classical delay line
Delay line to be used with gbr.copy and gbr.tapout~.
arguments: <sym: name> <num: size in given unit> - give name and size
attributes: unit <'msec'|'sec'|'samp': unit> - set time unit to msecs, secs or samples
scope <'local'|'global'> - set delayline name scope
messages: freeze <'0'|'1': freeze>] - enable/disable delay line freeze
clear - zero delay line
inlets: 0 - write signal into delay line
outlets: 0 - thru output (for order-forcing)

gbr.drain~ forward delay line
Delay line to write with different delays to be used with gbr.paste and gbr.tapin~.
arguments: <sym: name> <num: size in given unit> - give name and size
attributes: unit <'msec'|'sec'|'samp': unit> - set time unit to msecs, secs or samples
scope <'local'|'global'> - set delayline name scope
messages: clear - clear delay line
inlets: 0 - (order-forcing input)
outlets: 0 - sum delay line output

gbr.fft fast Fourier transform
Calculates FFT on incoming vector.
arguments: 0 <num: size> - FFT size (rounded to the next power of 2)
attributes: out <fmat: output> - set output vector
mode <'auto'|'complex'|'real': mode> - FFT mode
scale <num: factor> - scaling factor (1.) 0 stands for 1 / FFT size
messages: out <fmat: output> - set output vector
scale <num: factor> - scaling factor (1.) 0 stands for 1 / FFT size
inlets: 0 <fmat|fvec: vector> - real or conplex input vector
outlets: 0 <fmat: vector> - real or conplex output vector

gbr.fire~ Gabor timing impulse generator
Periodically outputs a given fmat or a bang within the Gabor scheduling scheme.
arguments: <num: period> [<fmat: vector>] - init period and fmat to fire (default is bang)
attributes: var <num: freq var> - set frequency variation (0 ... 1)
period <num: period> - set frequency or period (depending on unit)
out <fmat: out> - set output fmat
unit <'hz'|'msec'|'sec'|'s\ amp'|'midi'|'midicent': unit> - set frequency/period unit to Hz, msec or samples
messages: var <num: freq var> - set frequency variation (0 ... 1)
period <num: period> - set frequency or period (depending on unit)
out <fmat: out> - set output fmat
unit <'hz'|'msec'|'sec'|'sam\ p'|'midi'|'midicent': unit> - set frequency/period unit to Hz, msec or samples
inlets: 0 <num: freq/period> - fire frequency or period (depending on unit), O is off
1 <fmat: vector> - set fmat to fire
outlets: 0 - output fmat or bang

gbr.gen= generate waveform/function
Adds a given (and parametrised) waveform/function to an incomming vector.The user can chose among various waveforms/functions
arguments: <'cosine'|'sine': function> [<any: parameters> ...] - init generator function and parameters
attributes: none
messages: set <'cosine'|'sine': function> [<any: parameters> ...] - set generator function and parameters
inlets: 0 <fmat|fvec: vector> - input vector to which the waveform/function will be added
1 [<any: parameters> ...] - set generator parameters
outlets: 0 <fmat|fvec: vector> - output incoming vector with added waveform/function

gbr.harms estimate harmonics from a given spectrum (or any other vector)
Estimates frequencies (interpolated and scaled indices) and amplitudes of harmonics in an incoming vector.Harmonics are defined as peaks around the multiple of a given value (fundamental frequency) with a given tolerance.The estimation of harmonics in a spectrum works best when a logarthimic amplitude spectrum is provided as input.
arguments: 0 <num: max harms> - init maximum number of harmonics to be estimated
1 <num: freq in Hz> - init fundamental frequency in Hz
2 <num: factor> - init allowed deviation factor from theoretic harmonic frequency (linear factor of f0)
attributes: scale - choose scale factor ('ny' | 'sr' | <numeric factor>, negative factors are applied to a normalized)
messages: width <num: freq> - set maximum width for harmonic peaks
height <num: amp> - set minimum height for harmonic peaks
interval <num: cent> - set allowed deviation factor from theoretic harmonic frequency (in cent)
delta <num: factor> - set allowed deviation factor from theoretic harmonic frequency (linear factor of f0)
freq <num: freq in Hz> - set fundamental frequency
max <num: max harms> - set maximum number of harmonics to be estimated
inlets: 0 <fmat|fvec: vector> - input vector>
outlets: 0 <fmat: vector> - vector of harmonics

gbr.ifft inverse fast Fourier transform
Calculates inverse FFT on incoming vector.
arguments: 0 <num: size> - FFT size (rounded to the next power of 2)
attributes: out <fmat: output> - set output vector
mode <'auto'|'complex'|'real': mode> - FFT mode
scale <num: factor> - scaling factor (1.) 0 stands for 1 / FFT size
messages: out <fmat: output> - set output vector
scale <num: factor> - scaling factor (1.) 0 stands for 1 / FFT size
inlets: 0 - messages only
outlets: 0 <fmat> - no description

gbr.lifter (to be documented)
(to be documented)
arguments: 0 <num: # of points> - init the input size
1 <num: factor> - init the filtering factor
attributes: out <fmat: output> - set ouput vector
mode <'exp'|'sin': mode> - set the liftering type: exponential (Auditory Toolbox-like) or sinusoidal (HTK-like)
inv <'0'|'1': switch> - enable/disable the inverse liftering mode
messages: getstate - get the internal weights matrix
factor <num: factor> - set the filtering factor
insize <num: # of points> - set the input size
out <fmat: output> - set ouput vector
mode <'exp'|'sin': mode> - set the liftering type: exponential (Auditory Toolbox-like) or sinusoidal (HTK-like)
inv <'0'|'1': switch> - enable/disable the inverse liftering mode
inlets: 0 <fmat|fvec: vector> - cepstrum vector
outlets: 0 <fmat: vector> - liftered cepstrum
1 <fmat: weights> - internal weights matrix

gbr.lpc linear prediction coefficients
Calculates LPC coefficients from incoming sinal frame.
arguments: 0 <num: order> - init LPC order
attributes: out <fmat: output> - set output vector
errasfloat <'0'|'1': switch> - enable/disable float number output
messages: order <num: order> - set LPC order
out <fmat: output> - set output vector
errasfloat <'0'|'1': switch> - enable/disable float number output
inlets: 0 <fmat|fvec: vector> - input vector
outlets: 0 <fmat: vector> - LPC coefficients
1 <num|fmat: error> - prediciton error
2 <fmat: vector> - autocorrelation
3 <fmat: vector> - internal values

gbr.mask partial masking using critical band width
Calculates and applies masking to incoming vector of partials.The input format (attribute @format) determines the interpretation of the columns of the incoming matrix: 'fa' requires 2 columns with frequencies and amplitudes, 'ifa' requires 3 columns with partial indices, frequencies and amplitudes.
arguments: none
attributes: format - 'fa'|'ifa': input format> - set input matrix format
out <fmat: output> - set output vector
messages: calcpeaks <num: (left) peaks> [<num: right peaks>] - set number of peaks on the left and right to be taken into account in calculation
slope <num: slope> [<num: slope>] - set (left and right) masking slope
format - 'fa'|'ifa': input format> - set input matrix format
out <fmat: output> - set output vector
inlets: 0 <fmat: partials> - vector of partials (in given format)
outlets: 0 <fmat: partials> - vector of partials (in given format)

gbr.morph (to be documented)
(to be documented)
arguments: 0 <fmat: partials> - vector of paritals corresponding to the interpolation factor 0
1 <fmat: partials> - vector of paritals corresponding to the interpolation factor 1
attributes: format - 'plain'|'fa'|'ifa': input format> - set input matrix format
out <fmat: output> - set output vector
messages: format - 'plain'|'fa'|'ifa': input format> - set input matrix format
out <fmat: output> - set output vector
inlets: 0 <num: factor> - morphing factor (0...1)
1 <fmat: partials> - vector of paritals corresponding to the interpolation factor 0
2 <fmat: partials> - vector of paritals corresponding to the interpolation factor 1
outlets: 0 <fmat: partials> - vector of morphed paritals

gbr.ola~ overlap-add
Performs the overlap-add of incoming vectors into a forward delayline.The vector will be shortened at the end of the delayline.
arguments: 1 <num: size> - init buffer size
2 <num: delay> - init delay position
3 <num: channel> - init output channel (0: off)
attributes: unit <'msec'|'sec'|'samp': unit> - set time unit to msecs, secs or samples
interp <'on'|'off'|'yes'|'no'|1|0: switch> - enable/disable interpolation
messages: interp <'on'|'off'|'yes'|'no'|1|0: switch> - enable/disable interpolation
clear - clear delay line
inlets: 0 <fmat|fvec: vector> - overlap-add vector at given delay position
1 <num: delay> - set delay
2 <num: channel> - set output channel (0: off)
outlets: 0 - sum delay line output

gbr.paste paste a grain (fmat or fvec) into a drain
Copies a vector into a drain with a given delay.The vector will be shortened at the end of the drain.
arguments: 0 <delayline|fmat|fvec: destination> - init destination (write delay line or fmat)
1 <num: delay> - init delay position
attributes: unit <'msec'|'sec'|'samp': unit> - set time unit to msecs, secs or samples
interp <'on'|'off'|'yes'|'no'|1|0: switch> - enable/disable interpolation
messages: set <delayline|fmat|fvec: destination> - set destination (write delay line, fmat or fvec)
unit <'msec'|'sec'|'samp': unit> - set time unit to msecs, secs or samples
interp <'on'|'off'|'yes'|'no'|1|0: switch> - enable/disable interpolation
inlets: 0 <fmat|fvec: vector> - paste vector at given delay position
1 - set delay position
outlets: none

gbr.peaks estimate peaks (partials) from a given spectrum (or any other vector)
Estimates frequencies (interpolated and scaled indices) and amplitudes of peaks in an incoming vector.The estimation of partials in a spectrum works best when a logarthimic amplitude spectrum is provided as input.
arguments: 0 <num: max peaks> - init maximum number of peaks to be estimated
attributes: range <min: boundary> <max: boundary> - band where to search for peaks
scale - num|'ny'|'sr': factor> - set frequency scaling factor (negative factors are applied to a normalized domain)
keep <'lowest'|'strongest': mode> - keep first or strongest peaks
messages: dev <num: value> - set maximum deviation from mean value
width <num: freq> - set maximum width for peaks (indicates sinusoïdality)
height <num: amp> - set minimum height for peaks
max <num: max peaks> - set maximum number of peaks to be estimated
range <min: boundary> <max: boundary> - band where to search for peaks
scale - num|'ny'|'sr': factor> - set frequency scaling factor (negative factors are applied to a normalized domain)
keep <'lowest'|'strongest': mode> - keep first or strongest peaks
inlets: 0 <fmat|fvec: vector> - input vector (spectrum)>
outlets: 0 <fmat: vector> - vector of peaks

gbr.preemphasis (to be documented)
(to be documented)
arguments: 0 <num: factor> - init filtering factor
attributes: out - set the ouput object
messages: clear - clear any previous sample
getstate - get the previous sample
factor <num: factor> - set filtering factor
out - set the ouput object
inlets: 0 <fmat|fvec: vector> - input signal
outlets: 0 <fmat: vector> - ouput preemphasised signal
1 <fmat: vector> - previous frame

gbr.psy~ pysch synchronous (YIN-based) signal slicing
Cuts incoming signal into elementary waveforms.Outputs vectors corresponding to two periods of the estimated frequency or fixed duration (256 points) when unvoiced.
arguments: none
attributes: enable - enable/disable calculation and output
messages: threshold <num: pitch> [<num: noise>] - set pitch and noise tresholds
enable - enable/disable calculation and output
inlets: 0 - input signal to be analysed and cut into elemetary waveforms
outlets: 0 <fmat: vector> - elementary waveforms (2 periods)
1 <num: freq in Hz> - estimated frequency (0, when unvoiced)
2 <num: freq in H> - normaised YIN periodicity factor
3 <num: factor> (linear) energy

gbr.resample resampling
Resamples incoming vector in different modes:'cubic' (cubic interpolation), 'downmean' (downsampling by calculating the mean of a given number of values), 'downremove' (picks nearest value)
arguments: 0 <num: order> - init resampling order/increment (1.)
attributes: out <fmat: output> - set output vector
mode <'cubic'|'downmean'|'downremove': mode> - set resampling mode
messages: out <fmat: output> - set output vector
mode <'cubic'|'downmean'|'downremove': mode> - set resampling mode
inlets: 0 <fmat: vector> - input vector
1 <num: order> - set resampling order/increment (1.)
outlets: 0 <fmat: vector> - output vector

gbr.slice~ signal slicing
Cuts incoming signal into frames of given size with given period (hop size).
arguments: 0 <num: size> - init frame size
1 <num: size> - init hop size
attributes: unit <'msec'|'sec'|'samp': unit> - set time unit to msecs, secs or samples (default)
enable <'on'|'off'|'yes'|'no'|1|0: switch> - enable/disable calculation and output
period <num: size> - set hop size
size <num: size> - set frame size
messages: set <num: frame> <num: hop> - set frame and hop size
unit <'msec'|'sec'|'samp': unit> - set time unit to msecs, secs or samples (default)
enable <'on'|'off'|'yes&#\ 039;|'no'|1|0: switch> - enable/disable calculation and output
period <num: size> - set hop size
size <num: size> - set frame size
inlets: 0 - input signal to be sliced into frames
outlets: 0 <fmat: vector> - signal frames
1 <undefined> - no description

gbr.tapin~ input tap for write delay line
Simple input tap for write delay line defined by gbr.dline~.
arguments: 0 <delayline: write> - init delay line (defined by gbr.drain~)
1 <num: delay> - delay time (in given unit)
attributes: unit <'msec'|'sec'|'samp': unit> - set delay unit to msecs, secs or samples
messages: set <delayline: write> - set delay line (defined by gbr.drain~)
unit <'msec'|'sec'|'samp': unit> - set delay unit to msecs, secs or samples
inlets: 0 - input signal written to delay line
1 - set delay time
outlets: 0 - zero output (for order-forcing)

gbr.tapout~ output tap for read delay line
Simple output tap for read delay line defined by gbr.drain~.
arguments: 0 <delayline: read> - init delay line (defined by gbr.dline~)
1 - delay time (in msec)
attributes: unit <'msec'|'sec'|'samp': unit> - set delay unit to msecs, secs or samples
interp - 0|1|'off'|'on|'cubic'|'linear': mode> - interpolation mode
messages: set <delayline: read> - set delay line (defined by gbr.dline~)
unit <'msec'|'sec'|'samp': unit> - set delay unit to msecs, secs or samples
interp - 0|1|'off'|'on|&\ #039;cubic'|'linear': mode> - interpolation mode
inlets: 0 - (order-forcing input)
1 <sig|num: delay> - delay time
outlets: 0 - delayed signal

gbr.timer~ gabor timer
stop watch in Gabor scheduling scheme
arguments: none
attributes: unit <'msec'|'sec'|'samp'|'hz'|: unit> - set timer unit to msecs, secs, samples or Hz
messages: bang - report time since last bang
unit <'msec'|'sec'|'samp'|'hz'|: unit> - set timer unit to msecs, secs, samples or Hz
inlets: 0 - messages only
outlets: 0 <num: time> - time in given unit

gbr.trace (to be documented)
(to be documented)
arguments: 0 <num: max> - init maximum number of peaks
attributes: maxpasses - (to be documented)
absamp - (to be documented)
absfreq - (to be documented)
relfreq - (to be documented)
max - (to be documented)
messages: clear - (to be documented)
maxpasses - (to be documented)
absamp - (to be documented)
absfreq - (to be documented)
relfreq - (to be documented)
max - (to be documented)
inlets: 0 <fmat: partials> - vector of partials
outlets: 0 <fmat: partials> - vector of traced partials (with index)

gbr.unwrap '
arguments: 0 - init range
attributes: none
messages: range - set unwrap range
inlets: 0 - messages only
outlets: 0 - undefined

gbr.wind= apply a window to an incoming frame, grain or wave
Applies a chosen (and parametrized) window to the incomming fmat (column by column).The user can chose among various window types (see help patch).
arguments: <sym: function> [<any: parameters> ...] - init window function and parameters
attributes: none
messages: set <sym: function> [<any: parameters> ...] - set window function and parameters
inlets: 0 <fmat|fvec: vector> - input vector to be windowed
1 [<any: parameters> ...] - set window parameters
outlets: 0 <fmat|fvec: vector> - output incoming vector with applied window

gbr.yin fundamentatal frequency estimation after de Cheveigné and Kawahara
Estimates fundamental frequency and outputs energy, periodicity factor, and auto correlation coefficients.
arguments: 0 - minimum frequency (lowest analysed frequency) (default 50.)
1 - YIN threshold (default 0.68)
attributes: specnyq <num: ny> - input vector maximum frequency (22050.), which is sr/2.
sr <num: sr> - input vector sample rate (44100.)
threshold <num: frequency in Hz (lowest analysed frequency) (50.)
messages: specnyq <num: ny> - input vector maximum frequency (22050.), which is sr/2.
sr <num: sr> - input vector sample rate (44100.)
threshold <num: frequency in Hz (lowest analysed frequency) (50.)
inlets: 0 - signal frame (fmat or fvec
outlets: 0 <num: freq in Hz> - estimated frequency
1 <num: energy> - energy factor
2 <num: perodicity> - periodicity factor
3 <num: ac1> - 2nd autocorrelation coefficient (ac1)
4 <fmat: acf> - vector of autocorrelation coefficients